Resistor Notes

Resistor Facts and Factors

A resistor is a device connected into an electrical circuit to introduce a specified resistance. The resistance is measured in ohms. As stated by Ohm’s Law, the current through the resistor will be directly proportional to the voltage across it and inversely proportional to the resistance.

The passage of current through the resistance produces heat. The heat produces a rise in temperature of the resistor above the ambient temperature. The physical ability of the resistor to withstand, without deterioration, the temperature attained, limits the operating temperature which can be permitted. Resistors are rated to dissipate a given wattage without exceeding a specified standard “hot spot” temperature and the physical size is made large enough to accomplish this.

Deviations from the standard conditions (“Free Air Watt Rating”) affect the temperature rise and therefore affect the wattage at which the resistor may be used in a specific application.

Selection Requires 3 Steps

Simple short-cut graphs and charts in this catalog permit rapid determination of electrical parameters. Calculation of each parameter is also explained. To select a resistor for a specific application, the following steps are recommended:

1. (a) Determine the Resistance.
 (b) Determine the Watts to be dissipated by the Resistor.

2. Determine the proper “Watt Size” (physical size) as controlled by watts, volts, permissible temperatures, mounting conditions and circuit conditions.

3. Choose the most suitable kind of unit, including type, terminals and mounting.

Step 1 Determine Resistance and Watts

Ohm’s Law

(a) \(R = \frac{V}{I} \) or \(I = \frac{V}{R} \) or \(V = IR \)

Ohm’s Law, shown in formula form above, enables determination of the resistance when the required voltage and current are known. When the current and voltage are unknown, or the best values not decided on, at least two of the three terms in Ohm’s Law must be measured in a trial circuit.

(b) \(P = IR \) or \(P = VI \) or \(P = \frac{V^2}{R} \)

Power in watts, can be determined from the formulas above, which stem from Ohm’s Law. R is measured in ohms, V in volts, I in amperes and P in watts.

Why Watts Must Be Accurately Known

Stated non-technically, any change in current or voltage produces a much larger change in the wattage (heat to be dissipated by the resistor). Therefore, the effect of apparently small increases in current or voltage must be investigated because the increase in wattage may be large enough to be significant. Mathematically, the wattage varies as the square of the current, or voltage, as stated in the formulas (b). For example, an increase of 20% in current or voltage will increase the wattage 44%. Figure 1 below graphically illustrates the square law relation. Hence, the actual current must be used in figuring the wattage and the increase in wattage due to apparently small changes, then determined in order to select the proper size resistor. Allowance should be made for maximum possible line voltage.

Step 2 Power Rating or Physical Size of Resistor

A resistor operated at a constant wattage will attain a steady temperature which is determined largely by the ratio between the size (surface area) and the wattage dissipated. The temperature stabilizes when the sum of the heat loss rates (by radiation, convection and conduction) equals the heat input rate (proportional to wattage). The greater the resistor area per watt to be dissipated, the greater the heat loss rate and therefore the lower the temperature rise. The relation between the losses varies for different resistors.

Free Air Watt Rating

The wattage rating of resistors, as established under specified standard conditions, is defined as the “Free Air Rating” (“Full Rating” or “Maximum Power Rating”). Several standard methods of rating are in use based on different service conditions. The method of both the “National Electrical Manufacturers Association” (NEMA) and the “Underwriters’ Laboratories, Inc.” (UL) can be described as follows:

The relation of the “Free Air Watt Rating” of tubular type, vitreous enamelled resistors to the physical size, is to be set at such a figure that when operated at their rated watts, the temperature rise of the hottest spot shall not exceed 300°C (540°F) as measured by a thermocouple when the temperature of the surrounding air does not exceed 40°C (104°F). The temperature is to be measured at the hottest point of a two-terminal resistor suspended in free still air space with at least one foot of clearance to the nearest object, and with unrestricted circulation of air.

A slightly different definition of temperature limit used as a basis for wattage rating, and which results in a slightly higher attained temperature, was originally established in military specification MIL-

Fig. 1: Rapid increase of wattage with current or voltage.
R-26 for wirewound resistors.

Characteristic V resistors are required to dissipate rated wattage in an ambient of 25°C without exceeding a maximum operating temperature of 350°C at the hottest spot. This corresponds to a temperature rise of 325°C in a 25°C ambient. Although MIL-R-26 permits a 25°C greater temperature rise than NEMA or UL, the reference ambient for the latter two is 15°C higher. Consequently, the difference in attained temperature between the two systems is only 10°C. The curves in Fig. 2 show the relation between temperature rise and wattage for various specifications. Note the differences in the permissible rise for each specification.

The absolute temperature rise for a specific resistor is roughly related to the area of its radiating surface. It is also dependent upon a number of other factors, however, such as thermal conductivity of the core and coating materials, emissivity factor of the outer surfaces, ratio of length to diameter, heat-sink effect of mountings, and other minor factors.

The maximum permissible operating temperature for a given resistor is basically determined by the temperature limitations imposed by the materials used in its construction. Generally speaking, these limits cannot be sharply defined in terms of temperature alone. Other factors such as resistance stability versus time, deterioration rates of insulation and moisture-resistance characteristics, type and size of resistance wire, all enter into consideration of “acceptable service life.”

For these reasons, the precise temperature limits corresponding to 100% rated wattage are somewhat arbitrary and serve primarily as design targets. In the last analysis, once a wattage rating has been assigned on the basis of an empirical hot spot limit, the verification of its correctness must be established through long term load-life tests based on performance and stability standards rather than the measurement of hot spot temperature. Maximum limits are stipulated for parameter changes as a result of various tests, including a 2000 hour load-life test.

It is also assumed that the temperature rise at a given wattage is independent of the ambient temperature in which this wattage is being dissipated. Therefore, for high ambient temperatures, the operating wattage should be limited in accordance with the curves of Fig. 3. Although the assumption that temperature rise is independent of ambient is not exactly true, the approximation is sufficiently close for all practical purposes and, therefore, has been adopted for derating purposes.

Despite the above variables, figures may be cited in terms of “watts dissipated per square inch of winding surface” for a given temperature rise. For power type resistors operating at 300°C rise above ambient, this figure varies between approximately 6.3 watts per square inch for large resistors (175 watt) to about 9 watts per square inch for smaller resistors (12 watt). It should also be observed from Fig. 2 that temperature rise is not directly proportional to wattage dissipated. Note, for example, that at 50% rated wattage, the temperature rise still remains about 70% of that at full rating.

The wattage ratings used in this catalog, unless otherwise stated for certain types, are on the basis of a nominal operating temperature of 350°C at full rating. There are two general categories of power resistors for which the 350°C nominal temperature limit does not apply. One is that class of power-precision resistors where high stability is a salient feature, in which case the operating temperature is nominally limited to 275°C. The other category includes all exposed ribbon wire resistors (see description of Corrib® and Powr-Rib®) which are rated for 375°C (675°F) maximum temperature rise when measured on the wire per NEMA standards.

Temperature Distribution on a Resistor

The temperature rise varies (following a curve) along the length of the resistor with the hot spot at the center-top (of a horizontal tube) and the ends at approximately 60% of the maximum temperature rise. The terminals themselves are still cooler. When the resistor is vertical, the hot spot shifts upwards a little and the top end is hotter than the bottom. The standard “Free Air Watt Rating,” however, is used regardless of position.
Resistor Selection

Application Notes

STEPS 3 SELECT A RESISTOR

Choose the most suitable resistor meeting the requirements of the application. Standard resistors carried in stock should be considered first. If a suitable resistor cannot be found in the standard sizes or resistance values, then select a non-standard resistor from the range on available sizes (consult factory).

APPLICATION WATT RATING

To allow for the differences between the actual service conditions and the “Free Air Watt Rating” it is a general engineering practice to operate resistors at more or less than the nominal rating. The details by which such ratings can be estimated are given in the following pages. Most thermal calculations, however, involve so many factors which are usually not accurately known, that at best they are only approximations.

The most accurate method of determining or checking the rating is to measure the temperature rise in a trial installation. A thermocouple (made of #30 B & S gage wire) is recommended for the measuring element. Even measurements made with a thermocouple will vary slightly with different samples and techniques. The factors which affect the temperature rise act independently of each other and are summarized as follows:

1. **Ambient Temperature**
 As the maximum permissible operating temperature is a set amount, any increase in the ambient temperature subtracts from the permissible temperature rise and therefore reduces the permissible watt load.

2. **Enclosure**
 Enclosure limits the removal of heat by convection currents in the air and by radiation. The walls of the enclosure also introduce a thermal barrier between the air contacting the resistor and the outside cooling air. Hence, size, shape, orientation, amount of ventilating openings, wall thickness, material and finish all affect the temperature rise of the enclosed resistor.

3. **Grouping**
 When resistors are close to each other they will show an increased hot spot temperature rise for a given wattage because of the heat received by radiation from each other and the increased heat per unit volume of air available for convection cooling.

4. **Altitude**
 The amount of heat which air will absorb varies with the density, and therefore with the altitude above sea level. At altitudes above 100,000 feet, the air is so rare that the resistor loses heat practically only by radiation.

5. **Pulse Operation**
 This is not an environmental condition but a circuit condition. As a pulse of power, when averaged over the total on and off time, results in less heat per unit time than for continuous duty, the temperature rise is affected. This may permit higher power during the pulses. The conditions must be expertly considered for conservative rating. The open-wound “Powr-Rib®” resistor construction is most suitable.

6. **Cooling Air**
 Forced circulation of air over a resistor removes more heat per unit time than natural convection does and therefore permits an increased watt dissipation. Liquid cooling and special conduction mountings also can increase the rating.

7. **Limited Temperature Rise**
 It is sometimes desirable to operate a resistor at a fraction of the Free Air Watt Rating in order to keep the temperature rise low. This may be to protect adjacent heat sensitive apparatus, to hold the resistance value very precisely both with changing load and over long periods of time and to insure maximum life.

8. **Other Considerations**
 High Resistance. High resistance units, which require the use of very small diameter wire, generally should operate at reduced temperature for maximum reliability.

 High Voltage
 A maximum voltage gradient of 500 volts R.M.S. (705 volts peak) per inch of winding length is recommended under normal conditions. For higher gradients in pulse applications or for other special conditions such as oil immersion, consult factory.

 High Frequency
 Non-inductively wound resistors are generally required for use at high frequencies.

 Military and Other Specifications
 The special physical operating and test requirements of the applicable industrial or military specification must be considered. Military specification resistors should be ordered by their MIL numbers.
Resistor Selection

Application Notes

ENVIRONMENTAL FACTORS—EFFECT ON THE POWER RATING OF COMPONENTS

All the components of an electrical apparatus — resistors, rheostats, capacitors, transformers, chokes, wiring, terminal boards, rectifiers, transistors, electronic tubes, etc.—have their own limitations as to the maximum temperature at which they can reliably operate. The attained temperature in service is the sum of the ambient temperature plus the temperature rise due to the heat dissipated in the apparatus.

The temperature rise of a component is affected by a number of factors. The graphs and discussions which follow, amplify and supplement the factors on the previous page. Note that the Multiplying Factors given on the Short Cut Chart, on page 96 are the reciprocals of the “Percent Load Ratings” shown on the graphs in this section. The percent figures are, of course, expressed as decimals before finding the reciprocals.

Ambient Temperature Derating
Fig. 4 shows the percent of full load which power resistors can dissipate for various high ambient temperatures.

Derating Due to Enclosure
The amount of derating required, if any, because of enclosure is affected by a number of factors, most of which are hard to determine accurately. The watts per square inch of surface, size, shape, orientation, wall thickness, material, finish and amount and location of ventilating openings all play a part. Fig. 5 serves to indicate for a particular set of conditions how the temperatures varied with the size of enclosure for a moderate size power resistor.

Derating Due to Grouping
The temperature rise of a component is affected by the nearby presence of other heat-producing units, such as resistors, electronic tubes, etc. The curves in Fig. 6 show the power rating for groups of resistors with various spacings between the closest points of the resistors, assuming operation at maximum permissible hot spot temperature. If resistors are to be operated at lower hot spot temperatures, the amount of derating for grouping can be reduced.

Derating for Altitude
The curve in Fig. 7 shows the proportional watts for various altitudes, assuming standard atmospheric conditions.
Pulse Operation
Unlike the environmental factors, which result in reduction of the watt rating, pulse operation may permit higher power in the pulses than the continuous duty rating.

The NEMA has set up certain standard duty cycles for motor control resistors and the resistor ratings for some of these conditions are shown in Fig. 8.

The curves in Figures 10, 11, 12 and 13 illustrate the more general case of various combinations of on and off time for specified loads up to 1000% for a continuous series of pulses. Intermediate loads can be approximated by interpolation. The “on-time” at which each curve flattens out also indicates the maximum on-time for single pulses (with enough off-time for cooling to ambient). Additional data on single pulses is given by Fig. 9. Resistors will reach about 75% of the rated maximum temperature rise in approximately 5 to 8 pulses and level off at maximum rise in another 10 to 20 cycles, depending on percent load, size, type, etc. Any curve passing above the intersection of the designated on and off-times indicates a percent load which can be used. A resistor operated at the rating of an interpolated curve through the point of intersection would operate at maximum rated temperature rise.

The exact temperature rise, of course, varies with each resistor, depending on size, ohms winding, etc. The curves shown indicate the approximate rise for typical units only, as a band or range of values actually exists for each percent load.

Ratings at over 1000% are not recommended except for Powr-Rib® resistors. Curves for intermediate size resistors can be roughly estimated by comparison with the sizes given.

Ratings for single pulses in the millisecond range (and up to 1 to 2 seconds) require individual calculation. This is because the ratings vary greatly with the resistance, or more specifically with the actual weight and specific heat of the resistance alloy used. Calculation is based on the assumption that all of the heat generated in the pulse goes to raise the temperature of the resistance wire.

Resistor Selection
Application Notes
Resistor Selection

Application Notes

PULSE OPERATION — COOLING — LIMITED TEMPERATURES

Cooling Air
Resistors can be operated at higher than rated wattage when cooled by forced circulation of air. A typical curve is illustrated in Fig 14. The curve tends to level off at higher velocities as excessive hot spots develop where the air flow does not reach all parts uniformly.

Limited Temperature Rise
When it is desired to operate a resistor at less than maximum temperature rise, the percent watts for a given rise can be read from “Temperature Rise vs. Resistor Load” Fig 2 graph on page 91.
Resistor Selection

Application Notes

SHORT-CUT CHART METHOD TO FIND REQUIRED SIZE

(as affected by application conditions)

1. For each Condition, locate the relevant value on the scales below and record the corresponding Factor (F₁ to F₇). Note: The Standard Free Air Condition Factor is always 1.

2. Multiply the Factors together.

3. Multiply the Watts by the product obtained from 2 above.

Watts to be Dissipated

<table>
<thead>
<tr>
<th>Application Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Temperature</td>
</tr>
<tr>
<td>°C</td>
</tr>
<tr>
<td>300</td>
</tr>
</tbody>
</table>

Example

Four resistors, each dissipating 115 watts, are to be mounted in a group. Spacing is to be 2" surface to surface. Ambient to be 50°C (122°F). Enclosure to be total. Other factors standard. Determine Watt Size required.

Operation (1) On Ambient Temperature scale locate 50°C. Note and record F₁ = 1.1 as shown. Locate and record the other factors.

F₂ = 100%
F₃ = 4/8" Standard Conditions
F₄ = 1
F₅ = 1
F₆ = 1
F₇ = 1

Operation (2) Multiply the factors together = 2.64

Operation (3) 115 Watts x 2.64 = 304 Watts Free Air Watt Size Rating required for each resistor.
The resistance alloys used for all except the lowest ohmic values show such little change with temperature that in most power circuits the resistance is considered constant. Actually there may be changes at full load of -4% to +8% of the initial resistance. The change is attributed in most part to the “temperature coefficient of resistance” (TCR) which is the change in resistance expressed as “parts per million per degree centigrade of temperature” (ppm/°C).

For special applications which require very constant resistance, it may be necessary to specify the maximum permissible TCR for the range of temperature involved. This would limit the choice of wire to only certain types of resistance alloys. The commonly known low TCR alloys in the 800 ohms per circular-mil-foot class consist largely of nickel and chromium alloyed with small amounts of aluminum and either copper or iron. Other low resistivity alloys, 294 ohms per circular-mil-foot, consist primarily of nickel and copper with only traces of other metals.

Both of these wire classes are rated by the wire manufacturers as having a TCR of 0±20ppm/°C. The expression “0±20ppm/°C” implies that, although the nominal value of the TCR is zero, the actual value may lie anywhere within the tolerance range of −20ppm/°C to +20ppm/°C.

For other resistance wires such as the widely used nickel-chromium-iron, for example, a nominal value of +140ppm/°C is given. Actually, however, a tolerance of ±30ppm is applicable so that the TCR may range between the limits of +110 to +170ppm/°C.

Unfortunately, the TCR of a completed power resistor is generally somewhat different from that of the original wire. This is because the TCR may be affected by such factors as heat treatment during processing, and materials and methods of construction. Without special controls and precautions, the TCR over the range of 25°C to 300°C rise may increase to as much as 0±80ppm from the original 0±20ppm for certain types of wire on vitreous enameled resistors. Theoretical changes in resistance with temperature are shown in Fig. 15.

The circuit designer should carefully consider the actual needs of the circuit before specifying limits on the TCR of a desired resistor. Wherever possible it is best to select a resistor for a critical application so that it operates at a low temperature rise. This will also provide the maximum stability over a long period. For low TCR (and other) applications, Ohmite can provide resistors with an “Ohmicone” (silicone-ceramic) coating. “Ohmicone” is processed at much lower temperatures than vitreous enamel and therefore makes control of TCR and tolerance easier. Data on the TCR and other properties of various alloys is given on page 98.

Fig. 15: Calculated change in resistance with nominal TC assumed constant.
Resistor Selection

Application Notes

Resistance Alloys and Uses

A number of different resistance alloys are used in winding resistors and rheostats as shown in Fig. 16. The general use for each alloy is indicated by the column headed, “Resistance Range for Which Used.” Whether a particular alloy can be used on a specific resistor can be estimated by dividing the given resistance by the area of the given winding space and determining whether the quotient falls within the limits given hereafter. The “high resistance” alloys cover the range from approximately 10 to 25,000 ohms per square inch of winding area, the “low to medium” type from 5 to 400 ohms and the “very low resistance” alloys from less than an ohm to 250 ohms. It should be noted that the “Ohms per Square Inch” ranges overlap considerably, indicating that in many instances a given resistor could use any of several alloys. Both the upper and lower limits of the ranges are only approximate and in general can be extended somewhat when necessary.

The actual temperature coefficient of a complete resistor is generally greater than the nominal for the wire alone. The approximate change in overall resistance at full load is shown in the table.

Other Alloys

In addition to the alloys tabulated which show small changes in resistance with temperature, there are others which sometimes have to be used for very low resistance units. These alloys have higher temperature coefficients, which limit their use to applications where the change in resistance with load is not important. An example is No. 60 alloy, which has a resistance of 60 ohms per circular-mil-foot and a temperature coefficient of +700ppm/°C.

Ballast Wire

There are other alloys which are selected especially for their high temperature coefficient of resistance. These are used for so-called “ballast” resistors where a large change in resistance is desired with a change in load. A typical ballast wire is Nickel, which has 58 ohms/cmf and a temperature coefficient of +4800ppm/°C. Others are “Hytemco” and “Balco” at 120 ohms/CMF and a TC of +4500pp/°C.

Table of Resistance Alloys Generally Used for Resistors and Rheostats.

<table>
<thead>
<tr>
<th>ASTM Alloy Class*</th>
<th>Alloy Composition (Approximate)</th>
<th>Ohms per CMF</th>
<th>Trade Names</th>
<th>Mean Temp Coeff. of Res. ppm/°C</th>
<th>Temperature Range for TCR °C</th>
<th>Resistance Range for Which Used</th>
<th>Average Resistance Change at Full Load**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Nickel base, non-magnetic Ni 75%, Cr 20% plus Al, Cu, Fe, etc.</td>
<td>800</td>
<td>Evanohm Karma Moleculoy Nikrothal L</td>
<td>0 ± 20</td>
<td>-65 to + 250</td>
<td>Very high, Medium and up, for low temp. coeff.</td>
<td>Under ± 1% to ± 2%</td>
</tr>
<tr>
<td>2a</td>
<td>Iron base, magnetic Fe 73%, Cr 22.5%, Al 4.5% (plus Co in one alloy)</td>
<td>800</td>
<td>Alloy 815-R Kanthall Dr Mesaloy</td>
<td>0 ± 20</td>
<td>-65 to + 200</td>
<td>Alternate sometimes for Class 1</td>
<td>Under ± 1% to ± 2%</td>
</tr>
<tr>
<td>3a</td>
<td>Nickel-Chromium 80% — 20%</td>
<td>650</td>
<td>Chromel A Nichrome V Nikrothal B Protoloy A Tophet C</td>
<td>+ 80 ± 20</td>
<td>-65 to + 250</td>
<td>High and medium</td>
<td>+ 4 to + 5%</td>
</tr>
<tr>
<td>4</td>
<td>Nickel-Chromium-Iron 60%—16%—24%</td>
<td>675</td>
<td>Chromel C Electroloy Nichrome Nikrothal 6 Tophet C</td>
<td>+ 140 ± 30</td>
<td>-65 to + 200</td>
<td>High and medium</td>
<td>+ 5 to + 8%</td>
</tr>
<tr>
<td>5a</td>
<td>Copper-Nickel 55% — 45%</td>
<td>300</td>
<td>Advance Copel Cupron Cuprothal 294 Neutroloy</td>
<td>0 ± 20</td>
<td>-65 to + 150</td>
<td>Low and low to medium for low temp. coeff.</td>
<td>Under ± 1% to ± 2%</td>
</tr>
<tr>
<td>6</td>
<td>Manganin 13% Mn, 87% Cu</td>
<td>290</td>
<td>Manganin</td>
<td>0 ± 15</td>
<td>+ 15 to + 35</td>
<td>Low and low to medium for low TC near 25°C</td>
<td>Under ± 1% to ± 2%**</td>
</tr>
<tr>
<td>7</td>
<td>Copper-Nickel 77% — 23%</td>
<td>180</td>
<td>180 Alloy Cuprothal 180 Midohm</td>
<td>+ 180 ± 30</td>
<td>-65 to + 150</td>
<td>Very low</td>
<td>+ 5% to + 8%</td>
</tr>
<tr>
<td>9</td>
<td>Copper-Nickel 90% — 10%</td>
<td>90</td>
<td>90 Alloy 95 Alloy Cuprothal 90</td>
<td>+ 450 ± 50</td>
<td>-65 to + 150</td>
<td>Very low</td>
<td>+ 5% to + 10%</td>
</tr>
</tbody>
</table>

**For resistor with 300°C hot spot rise from 25°C ambient except 54°C rise for Manganin.
Ohm's Law defines the relationships between (P) power, (V) voltage, (I) current, and (R) resistance. One ohm is the resistance value through which one volt will maintain a current of one ampere.

<table>
<thead>
<tr>
<th>Resistance Values</th>
<th>Preferred Standard Resistance Values</th>
</tr>
</thead>
</table>

The resistance values listed below and their decimal multiples have been designated as standard by the International Electrotechnical Commission (IEC). This listing ensures that every possible resistance value within its respective tolerance range is represented. The omission of a resistance value does not necessarily mean that Ohmite cannot manufacture the desired value.

Please contact Ohmite at 866-964-6483 or sales@ohmite.com for resistance values not shown in this table.

<table>
<thead>
<tr>
<th>Resistance Values</th>
<th>Preferred Standard Resistance Values</th>
</tr>
</thead>
</table>

Ohm's Law defines the relationships between (P) power, (V) voltage, (I) current, and (R) resistance. One ohm is the resistance value through which one volt will maintain a current of one ampere.

- **I** Current is what flows on a wire or conductor like water flowing down a river. Current flows from negative to positive on the surface of a conductor. Current is measured in (A) amperes or amps.

- **V** Voltage is the difference in electrical potential between two points in a circuit. It's the push or pressure behind current flow through a circuit, and is measured in (V) volts.

- **R** Resistance determines how much current will flow through a component. Resistors are used to control voltage and current levels. A very high resistance allows a small amount of current to flow. A very low resistance allows a large amount of current to flow. Resistance is measured in ohms.

- **P** Power is the amount of current times the voltage level at a given point measured in wattage or watts.

Ohm's Law is:

\[P = IV \]

\[I = \frac{P}{V} \]

\[V = \frac{P}{I} \]

\[R = \frac{V}{I} \]

\[P = I^2R \]

\[V = IR \]

\[I = \frac{V}{R} \]

\[R = \frac{V}{I} \]
Resistor Terminology

Adjustable Resistor: A resistor so constructed that its resistance can be readily changed.*

Alternating Current: A periodic current the average value of which over a period is zero. The equation for alternating current is the same as that for a periodic current except that \(i = 0 \).

Ambient Temperature: The temperature of the surrounding coiling medium, such as gas or liquid, which comes into contact with heated parts of the apparatus.*

Ampere: The unit of constant current which, maintained in two parallel rectilinear conductors of infinite length separated by a distance of one meter, produces between these conductors a force equal to 2x10^-7 mks (meter-kilogram-second) units of force per meter of length.

Armature Resistor: A resistor connected in series with the armature of a motor either to limit the current on starting, the thermal short circuiting of which brings the motor to normal speed, or to regulate the speed by armature-voltage control.

Axiohm®: Centohm® Coated axial terminal wirewound resistor.

Bracket Terminal Resistor: A resistor equipped with slotted metal end brackets that serve as a means of mounting and connecting to the resistor.

Capacitance: That property of a system of conductors and dielectrics which permits the storage of electricity when potential differences exist between the conductors. Its value is expressed as the ratio of a quantity of electricity to a potential difference. A capacitance value is always positive.*

Capacitor: A device, the primary purpose of which is to introduce capacitance into an electric circuit. Capacitors are usually classified, according to their dielectrics, as air capacitors, mica capacitors, paper capacitors, etc.*

Clearance: The shortest distance through space between two live parts, between live parts and supports or other objects, or between any live part and grounded part.

Conduction: The transmission of heat or electricity through, or by means of, a conductor.

Conductor: A body so constructed from conducting material that it may be used as a carrier of electric current.*

Continuous Duty: A requirement of service that demands operation for a substantially constant load for an indefinitely long time.*

Continuous-Duty Resistor: A resistor that is capable of carrying continuously the current for which it is designed without exceeding the specified temperature rise.

Continuous Rating: Continuous rating is the rating that defines the load which can be carried for an indefinitely long time.*

Convection: Convection is the motion resulting in a fluid owing to differences of density and the action of gravity.

Corrill®: A tubular resistor consisting of an alloy resistance ribbon, crimped and edge-wound on a ceramic core, the ribbon being securely and permanently fastened to the core by vitreous enamel or cement.

Creepage Distance: The shortest distance between of opposite polarity or between a live part and ground as measured over the surface of the supporting material.

Current-limiting Resistor: A resistor inserted into an electric circuit to limit the flow of current to some predetermined value. Note: A current-limiting resistor, usually in series with a fuse or circuit breaker, may be employed to limit the flow of circuit or system energy at the time of a fault or short-circuit.*

Dielectric Strength: The dielectric strength of an insulating material is the maximum potential gradient that the material can withstand without rupture.* It is usually specified in volts per unit thickness.

Dielectric Test: A test which consists of the application of a voltage higher than the rated voltage for a specified time for the purpose of determining the adequacy against breakdown of insulating materials and spacings under normal conditions.*

Direct Current: A unidirectional current in which the changes in value are either zero or so small that they may be neglected. A given current would be considered a direct current in some applications, but would not necessarily be so considered in other applications.*

Divohm®: A resistor with a bare side and clamp for adjustment.

Edgeohm®: A high-current resistor made of an alloy resistance ribbon wound on edge forming an oval-shaped coil supported by grooved insulators which space adjacent turns and insulate them from the support bars. Support bars are secured to steel end pieces forming a sturdy resistor suitable for continuous-and-intermittent-duty applications.

EIA: Electronic Industries Alliance.

Electromotive Force: The electromotive force is the agency causing the flow of current in a circuit. It is the electrical pressure (or drop) measured in volts.

Farad: The unit of capacitance of an electric condenser in which a charge of one coulomb produces a difference of potential of one volt between the plates of the capacitor.

Ferrule Resistor: A resistor supplied with ferrule terminals for mounting in standard fuse clips.

Field Discharge Switch: A switch usually of the knife blade type having auxiliary contacts for connecting the field of a generator or motor across a resistor (field discharge) at the instant preceding the opening of the switch.

Fixed Resistor: A resistor designed to introduce only one set amount of resistance into an electrical circuit.

Henry: The unit of inductance of a closed circuit in which an electromagnetic force of one volt is produced when the electric current traversing the circuit varies uniformly at the rate of one ampere per second.

Hot Spot: The point or location of maximum temperature on the external surface of a resistor.

Inductance: The (scalar) property of an electric circuit or of two neighboring circuits which determines the electromagnetic force induced in one of the circuits by a change of current in either of them.*

Impedance: The apparent resistance of an AC circuit, being the combination of both the resistance and reactance. It is equal to the ratio of the value of the EMF between the terminals to the current, there being no source of power in the portion under consideration. The unit of impedance is the ohm and is represented by Z.

Intermittent Duty: A requirement of service that demands operation for alternate intervals of (1) load and no-load; or (2) load and rest; or (3) load, no-load and rest; such alternate intervals being definitely specified.*

Intermittent-Duty Resistor: A resistor capable of carrying for a short period of time the high overload current for which it is designed without exceeding the specified temperature rise.

Machine-Duty Resistor: A resistor for use in the armature or rotor circuit of a motor in which the armature current is almost constant.

Mega Ohm: A unit of resistance equal to one million ohms.

MIL Resistor: A resistor built in accordance with Joint Army-Navy specifications.

Multi-Section Resistor: A resistor having two or more electrically independent sections.

NEC: The National Electrical Code is the standard of the National Board of Fire Underwriters for electric wiring and apparatus as recommended by the National Fire Protection Association and approved by the American Standards Association.

NEMA: The National Electrical Manufacturers Association, a non-profit trade association, supported by the manufacturers of electrical apparatus and supplies. NEMA is engaged in standardization to facilitate understanding between the manufacturers and users of electrical products.

Nominal Diameter: As applied to tubular resistors, this is the diameter of the ceramic tube expressed in inches and/or fractions thereof.

Nominal Length: As applied to tubular resistors, this is the length of the resistor base or core expressed in inches and/or fractions thereof.

Non-Inductive Resistor: A non-inductive power resistor is one in which the inductance and distributed capacitance are reduced to an absolute minimum.

Ohm: A unit of resistance defined as the resistance at 0°C of a column of mercury of uniform cross-section having a length of 106.3 centimeters and a mass of 14.4 grams.

Ohmmeter: An instrument for measuring electric resistance that is provided with a scale graduated in ohms.

Periodic Duty: A type of intermittent duty in which the load conditions are regularly recurrent.*

Periodic Rating: The rating which defines the load which can be carried for the alternate periods of load and rest specified in the rating, the apparatus starting cold and for the total time specified in the rating without causing any of the specified limitations to be exceeded.*

Power: The time rate of transferring or transforming energy; the rate of doing work or expending energy.

Power Resistor: A resistor capable of dissipating 5 watts or more.

Rating: A designated limit of operating characteristics of a machine, apparatus or device, based on definite conditions.
Resistor Terminology

Note 1: Such operating characteristics as load, voltage, frequency, etc., may be given in the rating.

Note 2: The rating of control apparatus in general is expressed in volts, amperes, horsepower or kilowatts as may be appropriate, except that resistors are rated in ohms, amperes and class of service.

Rectifier: A device used for introducing reactance into a circuit for purposes such as motor starting, paralleling transformers and control of current.

Resistance: The (scalar) property of an electric circuit or of any body which may be used as part of an electric circuit which determines for a given current the rate at which electric energy is converted into heat or radiant energy and which has a value such that the product of the resistance and the square of the current gives the rate of conversion of energy. In the general case, resistance is a function of the current, but the term is most commonly used in connection with circuits where the resistance is independent of the current.

Resistance Tolerance: The resistance tolerance of a power resistor is the extent to which its resistance may be permitted to deviate above or below the specified resistance. Resistance tolerance is usually expressed in percent.

Resistance Method of Temperature Determination: This method consists in the determination of temperature by comparison of the resistance of the winding at the temperature to be determined with the resistance at a known temperature.

Resistive Conductor: A resistive conductor is a conductor used primarily because it possesses the property of high electric resistance.

Resistivity: The resistivity of a material is the resistance of a sample of the material having specified dimensions.

Resistor: A device, the primary purpose of which is to introduce resistance into an electric circuit.

Resistance Method of Temperature Determination: This method consists in the determination of the temperature by a mercury or alcohol thermometer, by a resistance thermometer, or by a thermocouple, any of these instruments being applied to the hottest part of the apparatus accessible to a mercury or alcohol thermometer.

Tapped Resistor: A resistor with two or more steps.

Temperature Coefficient of Resistance: A measure of the increase or decrease in resistance of a resistive conductor due to change in temperature in parts per million (ppm).

Tapped Resistor: A resistor with two or more steps.

Temperature Rise: Temperature rise is the difference in temperature between the initial and final temperature of a resistor. Temperature rise is expressed in degrees C or F, usually referred to an ambient temperature. Temperature rise equals the hot spot temperature minus the ambient temperature.

Thermal Shock: Thermal shock consists of a sudden marked change in the temperature of the medium in which the device operates.

Thermocouple: A device for converting heat energy into electrical energy consisting of a pair of dissimilar conductors so joined as to produce a thermo-electric effect. It is used with a millivoltmeter to measure temperature rise in apparatus.

Thermometer Method of Temperature Determination: This method consists in the determination of the temperature by a mercury or alcohol thermometer, by a resistance thermometer, or by a thermocouple, any of these instruments being applied to the hottest part of the apparatus accessible to a mercury or alcohol thermometer.

Tolerance (%): The tolerance is the allowable deviation from the nominal resistance value.

Varying Duty: A requirement of service that demands operation at loads, and for intervals of time, both of which may be subject to wide variation.

Voltage (V or E): The unit of measure is the volt. A unit of electrical pressure, EMF or potential difference. Ohmite’s voltage rating is the voltage that can be applied to the resistor without arcing or degrading the resistor.

Voltage Coefficient (VCR) The unit of measure is in parts per million (ppm). Voltage coefficient defines the change in the value of the resistor that occurs as the voltage changes. The resistor is measured at two voltages and the deviation is then calculated. VCR is usually stated as the change per volt (ex. 2ppm/v).

Watt: A unit of electric power. It is the power expended when one ampere of direct current flows through a resistor of one ohm.

Winding Pitch: The distance from any point on a turn of a resistive conductor to the corresponding point on an adjacent turn measured parallel to the long axis of the winding.

Resistance Values

<table>
<thead>
<tr>
<th>Abbreviations and Part Numbering Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Milli m</td>
</tr>
<tr>
<td>Centi c</td>
</tr>
<tr>
<td>Deci d</td>
</tr>
<tr>
<td>—</td>
</tr>
<tr>
<td>Deca, Deka da</td>
</tr>
<tr>
<td>Hecto h</td>
</tr>
<tr>
<td>Kilo k</td>
</tr>
<tr>
<td>1002</td>
</tr>
<tr>
<td>1003</td>
</tr>
<tr>
<td>Mega M</td>
</tr>
<tr>
<td>1005</td>
</tr>
<tr>
<td>1006</td>
</tr>
<tr>
<td>1506</td>
</tr>
<tr>
<td>Giga G</td>
</tr>
<tr>
<td>1008</td>
</tr>
<tr>
<td>1009</td>
</tr>
<tr>
<td>1509</td>
</tr>
<tr>
<td>Tera T</td>
</tr>
<tr>
<td>150A</td>
</tr>
<tr>
<td>100B</td>
</tr>
</tbody>
</table>

Part Numbering Structure may vary by product line.